I11

FLUOROSULFATO AND TRIFLUOROMETHYL SULFATO DERIVATIVES OF NIOBIUM(V)- AND TANTALUM(V) FLUORIDE

W. V. Cicha and F. Aubke

Department of Chemistry, The University of British Columbia, Vancouver, BC, V6T 1Y6 (Canada)

The title compounds are formally derived from either $[NbF_5]_4$ or $[TaF_5]_4$ by replacing F by SO_3X , X = F or CF_3 . They are expected to behave as Lewis acids and to form super acids when dissolved in the parent sulfonic acids or in HF; however, no example in this group seems to have been reported. We want to report the first three representatives of this group. $\underline{TaF_4(SO_3F)}$ is formed in high yield as a white, hygroscopic solid by the reaction of $Ta(SO_3F)_5$ [1] with $[TaF_5]_4$ in HSO_3F according to:

$$Ta(SO_3F)_5 + [TaF_5]_4 \xrightarrow{HSO_3F}{25^\circ C} 5TaF_4(SO_3F)$$

The formation reaction indicates the occurrence of F vs. SO_3F exchange and is capable of yielding other materials of the general composition $TaF_n(SO_3F)_{5-n}$ with n = 1 to 3. ¹⁹F NMR and vibrational spectra show the presence of bidentate, presumably bridging, SO_3F groups and terminal fluorine, suggesting an oligomeric structure. The corresponding $\underline{TaF_4(SO_3CF_3)}$ forms as a white solid when $Ta(SO_3F)_5$ dissolved in HSO_3F is reacted with a large excess of trifluoromethylsulfuric acid, HSO_3CF_3 . Finally, white, solid, $\underline{NbF_2(SO_3F)_3}$ forms as the main product when niobium metal is oxidized by bis(fluorosulfury1) peroxide, $S_2O_6F_2$, in HSO_3F . All the materials are characterized by chemical analyses, their vibrational spectra, and, where possible, ¹⁹F NMR spectroscopy.

1 W.V. Cicha and F. Aubke, J. Am. Chem. Soc., in press.